Mirai Solutions

smarter analytics - better decisions

Introduction to Programming in R

Martin Studer
June 29, 2017

©2017 Mirai Solutions GmbH 1/234

Course Objectives

The goal of this course is to provide a systematic introduction to
the open-source statistical programming language R. At the end of
this course you should have an understanding of the core language
concepts, allowing you to perform basic data manipulation and
analysis tasks as well as to dig further into more advanced topics.

©2017 Mirai Solutions GmbH 4/234

Introduction

©2017 Mirai Solutions GmbH 6/234

= R is a functional and object-oriented programming language
and environment for statistical computing and graphics

= R is an open-source implementation of the S programming
language which was originally developed at Bell Laboratories
(formerly AT&T, now Lucent technologies)

= R is free software and can be downloaded from
https://www.r-project.org/

= R is highly extensible through so-called packages which can
be freely downloaded from CRAN

©2017 Mirai Solutions GmbH 7/234

https://www.gnu.org/philosophy/free-sw.en.html
https://www.r-project.org/
https://cran.r-project.org/web/packages/

Using R Interactively

= Default prompt >: shown when R is expecting input
commands

> 1 + 1

= Continuation prompt +: shown when R is expecting further
input for an incomplete command

> 5 %
+ 3

= Pressing <Enter> sends a command to the R engine for
evaluation

s Use the up 1 and down | arrow keys to navigate the history of

commands

©2017 Mirai Solutions GmbH 8/234

Data Objects

©2017 Mirai Solutions GmbH 28/234

The goal of this first chapter is to provide a basic understanding
of R’s data structures and object system and as such to
provide a good foundation to understand programming and
performing statistical analyses in R.

©2017 Mirai Solutions GmbH 29/234

Creating & Saving Objects (1)

Objects are created by function calls. A vector, for example, can
be created using the ¢ (combine) function:

> c(2, 3, 5.6)

[1] 2.0 3.0 5.6

To save the object in a variable, assign it to a name:

> numbers <- c¢(2.3, 31, 2.54, 4, 23.1)
> numbers = c(2.3, 31, 2.54, 4, 23.1)

Use either <- or = for assignments. Best practice is to use <-

©2017 Mirai Solutions GmbH 38/234

Creating & Saving Objects (2)

In R, elementary commands consist of either expressions or
assignments. If an expression is given as a command, it is
evaluated, printed and the value is lost. An assignment also
evaluates an expression but assigns the result to a variable. The
result, however, is not automatically printed. By wrapping
assignments in (...) you can turn them into expressions and as
such also print the result:

> c(2.3, 31, 2.54, 4, 23.1) # expression

[1] 2.30 31.00 2.54 4.00 23.10

> numbers <- ¢(2.3,31,2.54,4,23.1) # assignment
> (numbers <- ¢(2.3,31,2.54,4,23.1)) # assignment to expression

[1] 2.30 31.00 2.54 4.00 23.10

©2017 Mirai Solutions GmbH 39/234

Vector Definition

= Vectors are ordered sequences of elements
= They are the basic building blocks for all data structures
= Vectors come in five flavors, or so-called modes:

= Numeric, e.g., 5, 1.25, 3.14159, 2.0

= Complex, e.g., 3+4i, 3.51

= Character, e.g., "small", "medium", "large"

= Logical, e.g., TRUE, FALSE

= NULL, the null object

= Sometimes results from a computation
= Sometimes used as default value of function arguments

= Vectors are atomic data structures since all elements must

be of the same mode

©2017 Mirai Solutions GmbH 41/234

Creating Sequences

> (vec2 <- 5:10)

[1] 5 6 7 8 910

> (vec3 <- seq(from = 10, to = 1, by = -2))

[1] 10 8 6 4 2

> seq(along = vecl) # instead of 1:length(vecl)

[1] 1 2 3 4

> seq(from = 2, by = 3, length = 4)

[1] 2 5 8 11

©2017 Mirai Solutions GmbH 44/234

Arithmetic in R is Vectorized (1)

R is vectorized. Vectors can be used in arithmetic expressions, in

which case the operations are performed element by element.

> 1:4
[1] 1 2 3 4
> 1:4 - 2

[1] -1 0 1 2
> 1:4 % 2

[1] 2 4 6 8

©2017 Mirai Solutions GmbH 49/234

Missing Values (1)

In some cases the components of a vector may not be completely
known. When an element or value is not available or a missing
value in the statistical sense, a place within a vector is indicated

by the special value NA.

The two functions is.na and which are used to locate and

manage missing values:

s The function is.na() returns TRUE and FALSE for missing

and non-missing values, respectively
= The function which() returns integer indices to the TRUE

values in its input: which(is.na(x))

©2017 Mirai Solutions GmbH 51/234

Subscript by Logical Vectors (1)

> vec <- ¢c(5, 1, NA, 11.1, 3, NA)
> names(vec) <- LETTERS[1:6]
> vec > 4

A B C D E K
TRUE FALSE NA TRUE FALSE NA

> vecl[vec > 4]

A <NA> D <NA>
5.0 NA 11.1 NA

©2017 Mirai Solutions GmbH 60/234

Subscripts and Missing Values (2)

> vec <- ¢c(5, 1, NA, 11.1, 3, NA)
> vec[!is.na(vec)]

[1] 5.0 1.0 11.1 3.0

> vec # vec is still the full vector!

[1] 5.0 1.0 NA 11.1 3.0 NA

To have vec only keep the non-missing values, you have to assign
the result of the expression back to vec:

> (vec <- vec[!is.na(vec)])

(1] 5.0 1.0 11.1 3.0

©2017 Mirai Solutions GmbH 64/234

Creating Matrices (1)

Several functions are useful for creating matrices:

Function Description

matrix Creates a matrix from a vector by specifying number
of rows and columns

dim Creates a matrix from a vector by specifying the row
and column dimensions

rbind Creates a matrix by binding vectors together row by
row

cbind Creates a matrix by binding vectors together column
by column

diag Creates a diagonal matrix from a vector

©2017 Mirai Solutions GmbH 77/234

An array is a generalized version of a matrix for n dimensions. A
classical example is a cube:

> arr <- array(1:20, dim = c(2, 5, 2))

> arr # the 3rd dimension is printed sequentially

[,11 [,21 [,3]1 [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

(,11 [,2] (.31 [,4] [,5]
(1,1 11 13 15 17 19
[2,] 12 14 16 18 20

©2017 Mirai Solutions GmbH 93/234

Array Subscripting

Extract elements or subsets using the bracket [, , ...]
operator using as many subscripts as there are dimensions in the
array. The syntax for subscripting is

arrayName [dim1Subscript, dim2Subscript, ...]
Example:
> arr[, 2:3, 2]
(.11 [,2]
(1,1 13 15

[2,] 14 16

©2017 Mirai Solutions GmbH 94/234

Create a list with the 1ist function:

> mat <- matrix(letters[1:10], nrow = 2, byrow = TRUE)
> (1st <- list(1:5, mat, mean))

[[111]
[1] 12345

[[2]1]

[,11 [,2]1 [,3]1 [,4] L,8]
[1,] "a" "b" "c" "d" e
[2,] "£" "g" "h" "i" vj

[[3]1]

function (x, ...)

UseMethod ("mean"

<bytecode: 0x4db51b0>

<environment: namespace:base>

©2017 Mirai Solutions GmbH 08/234

List Subscripting

There are three different operators for subscripting lists:

= [1: selects (possibly many) components of a list

= the result is a list again (consider a list as a vector of
components!)
= the usual five vector subscripting types are allowed

= [[11: extracts the content of a component in the list

= only one component can be extracted from
= accepts both the index or the name of a component

= §: extracts the content of a single named component

©2017 Mirai Solutions GmbH 102/234

Chaining Subscripts

When using recursive lists it is quite often necessary to chain

multiple subscripts together to extract data deeper in the structure.
> 1st[["aaa"]] [4:5]
[1] 4 5
> 1st$bbb[, "c5"]
rl r2
lle" |lj n
> # Brain exercise :-)

> 1st["bbb"]J[[1]1][1, c(2, 4), drop = FALSE][, 2]

[1] ndu

©2017 Mirai Solutions GmbH 106/234

The data frame is the most widely used data structure in R. Data

frames provide a convenient way to represent observations on a set
of variables.

= Like a matrix, a data frame is a rectangular structure

= rows represent observations
= columns represent the different variables
= Like a list, a data frame is recursive and its columns can have
different modes (types); the components must be vectors of
equal length

A data frame is best remembered as a list of equal-length
vectors.

©2017 Mirai Solutions GmbH 109/234

Creating Data Frames (1)

Use the data.frame function to combine several equal-length
vectors into a data frame:

> (df <- data.frame(

+ aaa = 1:4,

+ bbb = letters[26:23],

+ ccc = c(FALSE, TRUE, TRUE, FALSE)
+))

aaa bbb CEE

1 1 =z FALSE
2 2 y TRUE
3 3 x TRUE
4 4 w FALSE

©2017 Mirai Solutions GmbH 110/234

Subscripting Data Frames (1)

Data frames are lists, so you can use list subscripting syntax:

> df$index # extract column 'index'

[1] 1 23 4

> df[[1]] # extract 1st column

[1] 1 23 4

> df[1:2] # select the first two columns

index letter

rowl 1 Z
row2 2 y
row3d & X
row4 4 W

Note: The result is a data.frame!

©2017 Mirai Solutions GmbH 121/234

You can also use matrix subscripting syntax, because data

frames are rectangular:

> df[, 2] # extract 2nd column

[1] zy xw

Levels: w x y z

> df [, "letter"] # extract column 'letter'

[1l] zy xw
Levels: w x y z

> df[1:2, c(TRUE, TRUE, FALSE)]

index letter
rowl 1 Z

row2 2 y

©2017 Mirai Solutions GmbH 122/234

Functions

©2017 Mirai Solutions GmbH 140/234

Argument Types

There are three types of arguments for functions:

= Named required arguments have a specific name but no
default value and as such require user input.

= Named optional arguments have a specific name and a
default value and do not require user input.

= Unspecified arguments are represented by the ellipses
argument (. ..; sometimes referred to as dot-dot-dot) in the
argument list. This allows specification of arbitrary named

and unnamed parameters.

©2017 Mirai Solutions GmbH 144/234

Function Definitions

The basic syntax for defining a function is

functionName <- function(arguments) {
body
}

where

= functionName is the name of a new function

= function, followed by parentheses that enclose the
arguments, is a keyword

= arguments is a comma-separated list of arguments

= body is the set of commands executed by the function

©2017 Mirai Solutions GmbH 151/234

Function Return Values (1)

A function typically returns the last expression of the body, unless
it causes an error or a return is explicitly defined by using the
return() function.

> sphere <- function(r) {

+ # The list(..) statement is the last statement

+ # in the function and therefore it is the return
+ # value

+ list(

+ circumference = 2 * pi * r,

+ surface = 4 *x pi *x r°2,

+
+
+

volume = 4 / 3 * pi * r”3

}

©2017 Mirai Solutions GmbH 154/234

Conditional Execution: if-else Examples (1)

Euclid’s algorithm for the greatest common divisor:

> # Assumption: a > 0, b > 0
> gcd <- function(a, b) {
+ if(a == b) {

+ a

+ } else if(a > b) {

+ gcd(a - b, b) # recursion!
+ } else {

+ gcd(a, b - a) # recursion!
+)

+ }

©2017 Mirai Solutions GmbH 162/234

http://en.wikipedia.org/wiki/Greatest_common_divisor

The syntax of the for loop is

for (variable in vector) {

code
}
Example:
> for (month in month.name) { # month.name is built-in
+ print(sprintf("Month J%s has %s days.", month,
+ monthToDays (month, year = 2017)))
+ }

©2017 Mirai Solutions GmbH 172/234

Implicit Looping with the *apply Functions

The *apply functions (apply, lapply, sapply, tapply, by, ..)
implement looping using internal compiled code. This generally
makes them faster than for, while and repeat.

The *apply functions have the following core arguments:

= The object over which to loop (X, data)

= The function to be applied (FUN)

= Additional arguments to be passed to the function (FUN)
through the ellipses argument (.. .)

©2017 Mirai Solutions GmbH 180/234

apply

Apply a function to the margins of an array/matrix (sometimes
also a data frame).

MARGIN = 3
MARGIN = 2 apply(data, MARGIN = 1, mean)
apply(data, MARGIN = 2, summary)
apply(data, MARGIN = 3, sum)
MARGIN =1

©2017 Mirai Solutions GmbH 182/234

tapply is used to apply a function to a vector, subject to one or
more grouping variables (= list of vectors/factors).

Example with one grouping variable:
> tapply(mtcars$mpg, mtcars$am, mean)

0 1
17.14737 24.39231

©2017 Mirai Solutions GmbH 200/234

Importing / Exporting Data

©2017 Mirai Solutions GmbH 208/234

Importing / Exporting Data

R provides many built-in functions to read/write data from
various sources and there are many more available through
external packages from e.g. CRAN.

In this chapter we will only scratch the surface and will be covering
some of the most typical file formats such as delimited text, CSV
and Excel files.

©2017 Mirai Solutions GmbH 209/234

https://cran.r-project.org/

Reading Tabular Data (1)

read.table(), read.csv(), read.csv2(), read.delim() and
read.delim2() are the most commonly used functions to read tabular data
from text files. They all share similar arguments and all return a data.frame
object. The most important arguments are:

= file: file path

= sep: the field separator; delimiter separating the column (e.g. , or ;)

= header: a logical value indicating whether the file contains the names of
the variables as its first line

= row.names: a vector giving the actual row names, or a single number
giving the column of the table which contains the row names, or a
character string giving the name of the table column containing the row
names

= col.names: a vector of optional names for the variables

See 7read.table for a complete description.

©2017 Mirai Solutions GmbH 214/234

Reading Tabular Data (2)

"M, "Fertility
"Courtelar
"Delemont",
"Franches-Mnt

> mySwiss <- read.table("examples/swiss.txt", sep = ",",
header = TRUE, row.names = 1)
> mySwiss[1:3, 1:3]
Fertility Agriculture Examination
Courtelary 80.2 17.0 15
Delemont 83.1 45.1 6
Franches-Mnt 92.5 39.7 5

©2017 Mirai Solutions GmbH 215/234

Reading & Writing Excel Files

In order to read and write Excel files, you will need to use one of the many
freely available packages. Here, we are going to use XLConnect, a package
developed and maintained by Mirai Solutions.

XLConnect is a comprehensive and cross-platform R package for manipulating
Microsoft Excel files from within R. It is completely cross-platform and as such
runs under Windows, Unix/Linux and Mac (32- and 64-bit). Moreover, it does
not require any installation of Microsoft Excel or any other special drivers to
be able to read & write Excel files. The only requirement is a recent version of
a Java Runtime Environment (JRE).

If you don’t have the package installed yet, you will need to install it using

> install.packages("XLConnect", dependencies = TRUE)

©2017 Mirai Solutions GmbH 220/234

http://mirai-solutions.ch
https://cran.r-project.org/package=XLConnect

Reading Excel Files (1)

Car mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46) 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
Homet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
> require(XLConnect) # load package

> wb <- loadWorkbook("examples/data.xlsx") # load workbook

> data <- readWorksheet(wb, sheet = "mtcars", # read worksheet
+ rownames = "Car")

> datal1:5, 1:9]

mpg cyl disp hp drat wt qgsec vs am

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 O
Mazda RX4 Wag 21.0 160 110 3.90 2.875 17.02
Datsun 710 22.8 108 93 3.85 2.320 18.61

258 110 3.08 3.215 19.44
360 175 3.15 3.440 17.02

Hornet 4 Drive 21.4
Hornet Sportabout 18.7

0 O b O
O = = O
O O B K =

©2017 Mirai Solutions GmbH 221/234

Reading Excel Files (2)

Generally, first load a workbook using loadWorkbook (), then use
any combination of

= readWorksheet () to read a worksheet
> getSheets(wb) # query worksheets

[1] "mtcars" "co2"

> data <- readWorksheet(wb, sheet = "mtcars")
> data <- readWorksheet(wb, sheet 1)

= readNamedRegion() to read named regions
> getDefinedNames(wb) # query named regions
[1] "cotwo" "mtcars"

> data <- readNamedRegion(wb, name = "mtcars")

©2017 Mirai Solutions GmbH 222/234

Writing Workbooks

XLConnect also allows creating and writing worksheets and named regions.
While XLConnect can be used to produce fairly complex reports, we just cover
the basic usage of writeWorksheet() and writeNamedRegion() for data
export.

The process of creating/writing a workbook generally involves loading a
workbook, writing worksheets and named regions and finally saving the
workbook to disk using saveWorkbook():

Create a new workbook
wb <- loadWorkbook("swiss.xlsx", create = TRUE)
Create a sheet named 'swiss'

createSheet (wb, name = "swiss")

writeWorksheet (wb, data = swiss, sheet = "swiss", header = TRUE,
rownames = "Province")

>

2

>

2

> # Write built-in data set swiss to sheet 'swiss'

2

+

> # Save workbook - only now the workbook is written to disk!
>

saveWorkbook (wb)

©2017 Mirai Solutions GmbH 230/234

